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Abstract 

A common design pattern in spoken dialog systems is to reject 
an input when the recognition confidence score falls below a 
preset rejection threshold. However, this introduces a 
potentially non-optimal tradeoff between various types of 
errors such as misunderstandings and false rejections. In this 
paper, we propose a data-driven method for determining the 
relative costs of these errors, and then use these costs to 
optimize state-specific rejection thresholds. We illustrate the 
use of this approach with data from a spoken dialog system 
that handles conference room reservations. The results 
obtained confirm our intuitions about the costs of the errors, 
and are consistent with anecdotal evidence gathered through-
out the use of the system. 

1. Introduction 

One of the major problems in today’s spoken dialog systems is 
their brittleness when faced with understanding errors. The 
problem stems mostly from the unreliability of the speech 
recognition process and is exacerbated by the conditions under 
which spoken dialog systems typically operate: spontaneous 
speech, large vocabularies, large and diverse user populations, 
noisy phone lines, etc. In the absence of robust mechanisms 
for assessing the reliability of decoded results, recognition 
errors exert a significant negative impact on the quality and 
success of the interaction [1, 2].  

To perform this reliability assessment, spoken dialog 
systems typically use recognition confidence scores. A 
common design pattern is to reject an input when its 
confidence score falls below a preset rejection threshold. The 
use of a rejection threshold introduces a tradeoff between the 
number of misunderstandings and false rejections. As the 
threshold increases the system becomes more conservative: it 
accepts only inputs that have high confidence, and as a result 
the number of misunderstandings will decrease. This happens 
however at the cost of increasing the number of false 
rejections (see Figure 1(a)). Alternatively, we can also think 
about this tradeoff in terms of correctly and incorrectly 
transferred concepts. In each utterance, the user tries to convey 
one or more concepts to the system. If the confidence is below 
the rejection threshold, the system rejects the utterance and no 
concept is transferred. On the other hand, if the system accepts 
the utterance, some concepts will be transferred correctly, 
while others might be misrecognized. Ideally, we would like to 
maximize the number of correctly transferred concepts and 
minimize the number of incorrectly transferred ones. However, 
as we raise the rejection threshold to lower the number of 
incorrectly transferred concepts, the number of correctly 
transferred ones will also decrease (as shown in Figure 1(b)). 

The question we are addressing in this paper is: given the 
existence of this tradeoff, what is the optimal value for the 
rejection threshold? 

The paper is organized as follows: we start by reviewing 
current practices for setting rejection thresholds in the next 
section. Then, in Section 3, we describe a data-driven method 
for deriving the costs of various types of understanding errors, 
and for fine-tuning the rejection threshold. In Section 4 we 
briefly discuss a data collection effort which provided the 
corpus used in these experiments. Section 5 presents the 
results we obtained and Section 6 concludes the paper.  

2. Related Work 

Oftentimes rejection thresholds are set either at some arbitrary 
point (e.g. 0.3), or according to various rules-of-thumb and 
existing recommendations (e.g. find the break-even point). 
For instance, the Nuance speech recognition engine [3] has a 
default value of 45 for the rejection threshold (the range is 0-
100), and a number of spoken dialog systems which use this 
recognizer do not change this value. We believe that an a- 
priori, fixed rejection threshold is likely to be suboptimal for 
a number of reasons. Confidence annotators included in off-
the-shelf speech recognition engines are typically optimized 
with respect to word-error, while in the context of a spoken 
dialog system concept-error is more important. Even if the 
annotator captures semantic confidence, the relative costs of 
rejections and misunderstandings are likely to vary across 
different systems, and even across different dialog states 
within the same system. As a consequence, the tradeoff 
profile between these types of errors, and hence the optimal 
rejection threshold is likely to be different in each of these 
conditions. 

Another common approach is to empirically construct the 
tradeoff curves and optimize the threshold based on rules-of-
thumb regarding the costs of misunderstandings and 
rejections [4, 5, 6]. A frequently used rule is to assume that 
these costs are equal and therefore minimize the total sum of 
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Figure 1. Typical rejection tradeoff curves  
(a) misunderstandings and false rejections.  
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errors. Other systems assume that misunderstandings are 
twice more costly than rejections (as they seem harder to 
repair), and find the optimal rejection threshold accordingly.  

In [7], we proposed a more principled, data-driven 
technique that allows us to derive actual costs for various 
types of errors made by a confidence annotator. The costs we 
obtained from a model build on data from the CMU 
Communicator system [8] confirmed the intuition that 
misunderstandings are more costly than rejections. When 
using the costs to optimize the threshold we obtained however 
an unexpected result: for a wide range of rejection threshold 
values, the model predicted that the overall cost would stay 
roughly constant. 

In this work, we start from the intuition that the costs for 
different types of understanding errors might vary across 
different dialog states. We expand on the models proposed in 
[7] by introducing state distinctions. The new models allow us 
to capture the costs of various types of errors at different 
points in the dialog, and to find state-specific optimal values 
for the rejection threshold.  

3. Method 

We now describe the proposed method for deriving costs for 
errors and finding the optimal rejection threshold. For 
purposes of clarity we will start by illustrating the approach 
with an example.  

Assume we are interested in optimally balancing the 
average number of correctly and incorrectly transferred 
concepts per turn. Let’s call these variables CTC and ITC. 
Note that these quantities vary with the rejection threshold: as 
the threshold increases, the average number of incorrectly 
transferred concepts per turn will decrease, but so will the 
average number of correctly transferred concepts (see Figure 
1(b)). In addition, let’s assume we want to optimize for task 
success – TS, modeled as a binary variable. We can determine 
the relative costs of correctly and incorrectly transferred 
concepts with respect to task success by fitting a logistic 
regression model [9] using CTC and ITC as predictors and TS 
as the dependent variable. Each data-point in the regression 
model corresponds to an entire dialog session. Let’s assume 
we obtain a good fit for the model, represented by the 
following regression equation: 

 

logit(TS) = 0.21 + 2.14·CTC – 4.12·ITC 
 

This equation would tell us that on average an incorrectly 
transferred concept has a cost (-4.12) about twice as high as 
the utility (+2.14) a correctly transferred concept. With these 
costs and the CTC and ITC profiles in hand, we can now 
easily find the threshold which maximizes the overall utility: 
2.14·CTC – 4.12·ITC. 

The method can therefore be summarized in 4 steps: 
1. identify a set of variables ,..., BA  involved in the 

rejection tradeoff (e.g. CTC and ITC) 
2. choose a global dialog performance metric P  to 

optimize for (e.g. TS - task success); 
3. fit a model m  which relates the tradeoff variables to 

the chosen global dialog performance metric: 
m(A,B)P ←  

4. find the threshold which maximizes the performance: 
)))(),(((maxarg)(maxarg* thBthAmPth

thth
==  

In general, the performance metric P  (i.e. the dependent 
variable in the regression model) can be any objective or 
subjective dialog performance metric. Candidates include: 
task success (measured either as a binary variable or using the 
Kappa agreement statistic [2]), task duration, user 
satisfaction, etc. The type of this variable dictates the type of 
the regression model. For instance, binary task completion 
should be modeled using logistic regression, while task 
duration (expressed as the number of turns) can be modeled 
as a Poisson variable in a generalized linear model [9]. 

Similarly, any variables affected by the rejection tradeoff 
can be used as predictors in the model. In the example 
discussed above, we used the average number of correctly and 
incorrectly transferred concepts per turn. In Section 4 we 
show how, by using the same methodology with different 
predictor variables, we can develop finer-grained models that 
allow us to determine state-specific costs, and therefore find 
state-specific rejection thresholds. 

4. Data  

The cost models discussed in this paper were built using data 
collected in a user study in which 46 participants interacted 
with RoomLine [10], a phone-based, mixed-initiative spoken 
dialog system for making conference room reservations.  

The system has information about the availability and 
characteristics (e.g. size, location, A/V equipment, etc.) of 13 
conference rooms in 2 buildings on campus. To make a room 
reservation, the system finds the list of available rooms that 
satisfy an initial set of user-specified constraints, and engages 
in a follow-up negotiation dialog to present this information 
to the user and identify which room best matches the user’s 
needs. Throughout the data collection experiment, the system 
used a fixed rejection threshold of 0.3.  

Each participant attempted a maximum of 10 scenario-
based interactions with the system, within a set time period of 
40 minutes. The scenarios were designed to cover all 
important aspects of the system’s functionality and had 
different degrees of difficulty. To avoid lexical entrainment, 
they were presented to the users in a graphical manner.  

The user speech data was transcribed orthographically by 
a human annotator. The transcriptions were subsequently 
checked by a second annotator. Each dialog session was 
labeled as successful or not. Each user turn was labeled with 
the number of correctly and incorrectly transferred concepts. 
If a turn contained at least one incorrectly transferred concept, 
it was labeled as a misunderstanding.  

The corpus contains a total of 449 dialog sessions and 
8278 user turns. For an in-depth description of the data 
collection experiment, as well as other corpus statistics and 
existing annotations, the interested reader is directed to [11]. 

5. Cost Models and Threshold Optimization 

Following the methodology presented in Section 3, we 
constructed models for estimating the relative costs of 
correctly and incorrectly transferred concepts. We started from 
the hypothesis that these costs would vary across dialog states, 
and hence used as predictor variables the average number of 
correctly (and incorrectly) transferred concepts per turn for 
each of the dialog states considered. The model becomes:         
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where ii ITCCTC , are the average number of correctly and 

incorrectly transferred concepts per turn in state i. 
The state-space for the RoomLine system subsumes 71 

states. We clustered these states into 3 classes which we 
suspected would exhibit different characteristics in terms of 
the rejection tradeoff: open-request, in which the system asks 
an open question (e.g. “How may I help you?”); 
request(bool), in which the system requests a yes/no answer 
from the user (e.g. “Do you want a reservation for this 
room?”); and request(non-bool), in which the system requests 
a concept with more than 2 possible values from the user (e.g. 
“Starting at what time do you need the room?”). We believe 
that finer distinctions could be made if larger amounts of 
training data were available.  

5.1. Optimizing for Task Success 

In a first model we used task success as the target for 
optimization. The predictor variables were the average number 
of correctly and incorrectly transferred concepts per turn, for 
each of the 3 dialog states discussed above.  

Given the binary representation of task success, we fitted 
a logistic regression model. The model showed a good fit, 
increasing the average log-likelihood of the data from a 
baseline of -0.4655 to -0.2952 (p<10-4 in a likelihood ratio 
test). The 10-fold cross-validation average log-likelihood was 
-0.3059, indicating a robust fit. In a hard metric evaluation, 
the model is able to predict task success with an error rate of 
11.75% (the majority baseline was at 17.62%).  

Table 1 shows the resulting regression coefficients 
together with their corresponding standard errors and p-values 
(the null hypothesis is that the coefficient is 0). The regression 
coefficients reflect the impact on task success of correctly and 
incorrectly acquired concepts. As expected, the coefficients 
for correctly transferred concepts are positive, while the 
coefficients for incorrectly transferred concepts these are 
negative. Note also that the ratio of the costs for correctly and 
incorrectly transferred concepts ranges widely between the 3 
different states, confirming our initial hypothesis. 

Next, we used the costs obtained in regression to find 
optimal thresholds for each of the 3 dialog states, in light of 
the CTC / ITC tradeoff curves. Figure 2 shows how CTC, ITC 
and the overall utility function (UTIL) vary with the rejection 
threshold. For the open-request and request(bool) states the 
maximum utility is attained when the rejection threshold is at 
zero (i.e. always accept). If for the open-request state, 0 is 
clearly the maximizing point, for the request(bool) state the 
utility profile has a large plateau indicating that for a certain 
range of threshold values (0 – 0.6), the utility stays roughly 
constant. Finally, in the request(non-bool) state the utility 
function has again a clear maximum which is reached for a 
rejection threshold value of 0.61. 

As the standard errors on the coefficients raised some 
concerns, we performed an additional robustness check. We 
split the data into halves, built separate models on each half 
and compared the results. The variations in the cost 
coefficients were minor, the resulting utility profiles had very 
similar shapes for all states across the models, and the 
maximizing points were at the same locations. 

The resulting threshold values are consistent with 
anecdotal evidence gathered throughout the data collection 
experiment. As experiment was under way, we noticed that 
long utterances (which were very frequent after the initial 
“How may I help you?” prompt) would generally have low 
confidence scores and therefore would be rejected by the 
system even though they were correctly recognized. This was 
confirmed by a later analysis which showed that in the open-
request state the proportion of falsely rejected utterances was 
much larger than in the other 2 states (17.4% as opposed to 
2.0% and 1.7%). We conjecture that this behavior was caused 
by a mismatch between the data encountered throughout the Table 1. Regression coefficients (i.e. costs) 

 

Variable Coefficient S.E. p-value 
Const -2.34 1.15 0.0416 
CTC / open-req 0.55 0.29 0.0619 
ITC / open-req -0.40 0.46 0.3801 
CTC / req(bool) 3.31 1.00 0.0010 
ITC / req(bool) -0.59 1.30 0.6491 
CTC / req(non-bool) 2.55 0.81 0.0017 
ITC / req(non-bool) -3.44 1.10 0.0018 
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experiment and the data used to train the confidence 
annotator. The confidence training data consisted of calls to 
the live version of the system; in this data a number of users 
were exploring the boundaries of the system, and long 
utterances generally led to misunderstandings. This pattern 
was picked up by the confidence annotator, but it was no 
longer valid throughout the controlled experiment. The model 
we developed indicates that the cost for incorrect concepts is 
not very high in this state (we are at the beginning of the 
dialog). Taking into account the potentially larger number of 
correctly transferred concepts in this state (due to longer 
utterances), the model correctly indicates that the system 
should use a threshold of zero (i.e. accept everything). This 
result shows how the proposed model can indeed compensate 
for potential mismatches between a given confidence anno-
tator and the characteristics of the domain in which it is used. 

The large plateau in the resulting cost profile for the 
request(bool) state is consistent with the fact that most 
responses in this state are simple yes/no answers, which 
generally have high confidence scores. As a result, for low 
values of the threshold, very few utterances are rejected, and 
the numbers of correctly and incorrectly transferred concepts, 
as well as the overall cost stay roughly constant. 

Finally, the last question we asked was: what changes 
should we expect as we move the threshold from its current 
default position at 0.3 to the new values? The results are 
shown in Table 2. For the open-request state, we expect an 
average increase of 0.35 correctly transferred concepts per 
turn, at the expense of a 0.15 increase in incorrectly 
transferred ones. For the request(bool) state the situation stays 
roughly the same. For the request(non-bool) state we expect a 
small decrease in both the incorrectly and the correctly 
transferred concepts per turn. Finally, we can also query the 
constructed logistic regression model for the expected value 
of the overall task success rate at the new average CTC / ITC 
values. The model predicts a 4.4% absolute increase in task 
success rate. This however is an estimate of the expected 
value of task success, and remains to be validated empirically.  

5.2. Optimizing for Task Duration 

In a second model we used task duration (for successful tasks) 
as the target for optimization. We kept the same predictor 
variables as for the task success model. 

In this case, given that task duration was expressed as the 
number of turns, we modeled it as a Poisson response variable 
in a generalized linear model [9]. We normalized for the 
inherent differences in durations between the 10 different 
scenarios by introducing the mean duration for the scenario as 
an offset variable in the regression model. 

The model showed a good fit (p<10-4). The resulting 
utility profiles for the open-request and request(bool) states 
were very similar to those obtained when optimizing for task 

success, indicating again an optimal rejection threshold of 0 
for these states. For the request(non-bool) state, the optimal 
threshold was again 0.61, but in this case the utility profile 
had a less pronounced maximum.  

6. Conclusion 

We have described a data-driven approach for determining the 
costs of various types of understanding errors involved in the 
rejection tradeoff in a spoken dialog system. The method 
determines these costs by relating the errors to a global dialog 
performance metric. Once the costs are available, they can be 
used to optimize utterance rejection thresholds in a principled 
manner. We have shown that the proposed method can be 
used to derive state-specific costs of errors and determine 
state-specific utterance rejection thresholds.  

The results we obtained by using the method with data 
from a spoken dialog system for conference room reservations 
confirmed our expectations, and were consistent with other 
anecdotal evidence gathered through use of the system. In the 
future, we plan to empirically validate the predicted gains in 
performance. 

Generally, the proposed method can be used to bridge the 
potential mismatch between an existing confidence annotator 
and the particular characteristics of the dialog system and 
domain in which it is used. 
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Table 2. Estimated changes in CTC, ITC and Task Success 

State Variable Current New Delta 
CTC 0.54 0.89 +0.35 open 

request ITC 0.16 0.31 +0.15 
CTC 0.84 0.86 +0.02 request 

bool ITC 0.09 0.12 +0.03 
CTC 0.72 0.66 -0.06 request 

non-bool ITC 0.25 0.17 -0.08 

Task success rate 82.75% 87.16% +4.41% 
 


