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Abstract. Effective situated interaction hinges on the well-coordinated operation 

of a set of competencies, including computer vision, speech recognition, and nat-

ural language, as well as higher-level inferences about turn taking and engage-

ment. Systems often rely on a set of hand-coded and machine-learned compo-

nents organized into several sensing and decision-making pipelines. Given their 

complexity and inter-dependencies, developing and debugging such systems can 

be challenging. "In-the-wild" deployments outside of controlled lab conditions 

bring further challenges due to unanticipated phenomena, including unexpected 

interactions such as playful engagements. We present a methodology for as-

sessing performance, identifying problems, and diagnosing the root causes and 

influences of different types of failures on the overall performance of a situated 

interaction system functioning in the wild. We apply the methodology to a dataset 

of interactions collected with a robot deployed in a public space inside an office 

building. The analyses identify and characterize multiple types of failures, their 

causes, and their relationship to overall performance. We employ models that 

predict overall interaction quality from various combinations of failures. Finally, 

we discuss lessons learned with such a diagnostic methodology for improving 

situated systems deployed in the wild. 

Keywords: situated interaction, human-robot interaction, dialog systems, inte-

grative AI, failure diagnosis. 

1 Introduction 

Systems designed to engage in physically situated language interaction with human 

users in the open world, such as social robots and conversational agents, rely on multi-

ple competencies to interact effectively. These systems combine speech recognition and 

vision pipelines with models for higher-level inferences (e.g., about presence, inten-

tions and attention, speakers and addressees, etc.) and interaction planning. 

An important set of challenges in the development of these systems arises from the 

need to coordinate multiple heterogeneous components for sensing, reasoning, and act-

ing. The interdependencies among these components can lead to development, refine-

ment, and maintenance problems [1]. Many components are machine learned and thus 

have nondeterministic behaviors. Often, components are tightly coupled in multistage 
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processing pipelines, making it difficult to diagnose errors and assign blame. For ex-

ample, when failures occur in a speech processing pipeline, it is difficult to pinpoint 

exactly which of the relevant sub-components (e.g., echo cancellation, voice-activity 

detection, speech recognition, language understanding, etc.) is to blame and where ef-

forts for improving the system should be focused. Since components may be trained on 

the erroneous outputs of other components, making improvements to individual com-

ponents can lead to novel failures downstream and degraded performance [2]. 

Another set of challenges in these systems arises from the nature and diversity of 

interactions that may occur in the real world [3, 4]. When designing and testing situated 

systems in a laboratory environment, subjects are typically instructed to carry out a 

specific task with the system. Functionality and failures are assessed in relation to a 

battery of subjective and objective task-specific metrics. However, once deployed in 

the wild, the specific task goals assumed in the design and study of the system may not 

align with the goals of people approaching or engaging with the system. Users may 

attempt actions that are out-of-domain and therefore difficult to handle. Even when a 

user is interacting within the system’s intended domain, there can be wide variability 

in interaction styles and attitudes. Especially during first encounters with the robotic 

system, many users may be driven by curiosity about the system, rather than a real task-

centric need; they may playfully test the system’s capabilities. The types of failures 

occurring in an interactive system may change based on the nature of the interaction. 

We present an annotation-based methodology combining observer and system-ex-

pert views to investigate failures in a deployed situated interactive system. The meth-

odology is composed of a workflow of annotations and analyses for identifying the type 

of interaction users engage in, assessing the overall interaction quality, identifying spe-

cific problem types on a turn-by-turn basis, and diagnosing the root causes of these 

problems along with their impact on the system’s overall performance. Root causes are 

associated with specific components identified by the system expert. We investigate 

relationships between observed failures, their component causes, and the overall inter-

action quality with the goal of diagnosing the most important system problems. 

We showcase the methodology through a case study with a directions-giving human-

oid robot. The methodology allows us to gain insight into the system’s behavior and 

performance towards guiding future engineering efforts. The analyses show that prob-

lems with the content of robot utterances explain overall interaction quality better than 

problems with timing. Across different components, speech recognition and engage-

ment component failures are most informative in understanding overall quality, and 

data-driven models that consider all component failures are capable of predicting qual-

ity scores close to the level of a human annotator. The analyses also show that the type 

of the interaction that happens in the wild is an important factor in error diagnosis af-

fecting not only interaction quality but also the types and origins of problems. 

2 Background 

Prior relevant research on failure diagnosis has proposed the use of crowdworkers 

to understand bottlenecks and to perform blame assignment in single-shot machine 
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learning pipelines [2, 5]. However, this approach hinges on the ability to rapidly simu-

late system execution to test potential fixes in the loop, and is thus not viable for tem-

porally extended situated interactions seen with human-robot interaction. 

A large body of work has addressed the topics of evaluation and blame assignment 

in spoken dialog systems [6, 7]. Schmitt et al. investigate interaction quality at arbitrary 

points in the dialogue by utilizing external observer annotations [11]. The PARADISE 

framework utilizes multiple regression analysis to model the relationship between ob-

jective task success, dialogue costs, and user satisfaction of a spoken dialogue system 

[12]. Methods for detecting errors directly from recognition results, inferring previous 

errors from user reactions to the system, and predicting possible future errors based on 

dialogue turns have also been explored [13]. Walker et al. [14] assessed the perfor-

mance of error detection models using multiple components of a dialogue system, find-

ing the best results when all components were considered together (ASR, NLP, Dia-

logue Manager, etc.). Our work complements and extends these efforts by considering 

larger heterogeneous robot systems with multimodal interaction competencies and by 

reasoning about system behavior in the wild with respect to different interaction types. 

3 Directions Robot 

The experimental basis for the work reported in this paper is the Directions Robot [8] 

(Figure 1), which couples a Nao robot with off-board sensors and processing. The sys-

tem uses an external wide-angle RGB camera and a Kinect sensor in speech and vision 

processing pipelines which allow it to reason about conversational engagement [9] (i.e., 

determine who is engaged in an interaction) and turn-taking (i.e., determine when it 

should speak) in multiparty interaction. The robot can understand requests for direc-

tions to people’s offices by name or number, as well as to common areas (e.g., kitchen, 

bathrooms, etc.). When speaking, the robot coordinates speech with head movements 

and arm gestures. The system is deployed outside the elevators on the third floor in our 

building. Traffic in this area includes both building residents and visitors. We placed 

signs near the robot and inside the elevators briefly describing the robot capabilities, as 

well as the policies for data collection and opting out. 

Interactions that naturally occur in this space can be classified into several distinct 

types. A subset of interactions is characterized by users having a real need to seek di-

rections, which we refer to as In-Domain-Real interactions. However, previous re-

search with this system has revealed that a large portion of interactions are not based in 

an actual need for directions [10]. Some interactions arise out of curiosity and desire to 

Figure 1. The Directions Robot interacting with a user 
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test the systems with directions requests (In-Domain-Exploring). Others diverge en-

tirely from seeking directions, e.g., users asking the robot about the weather (Out-of-

Domain). Moreover, due to various failures in face detection and engagement model-

ing, the robot sometimes falsely starts interactions with “imagined” people or with peo-

ple who did not wish to engage. We refer to these as Falsely-Initiated interactions. 

Different user intentions and interaction types have influences on the behavior of the 

system and on considerations for a successful interaction. 

4 Annotating Failures 

We collected a dataset of 173 interactions over a period of eleven days with the Direc-

tions Robot. The average interaction duration was 25 seconds, with the longest interac-

tion lasting 164 seconds. 141 (82%) of the interactions involved a single engaged par-

ticipant, while 32 (18%) involved two or more engaged participants. 

Our methodology involves annotating the dataset across four different dimensions: 

interaction type, overall interaction quality, problem types (detailed content and timing 

problems), and component causes (underlying failure points in the system causing the 

problems). The first three annotations (interaction type, interaction quality, and prob-

lem types) reflect externally observable aspects and perceptions of the robot’s behavior. 

These annotations were performed by a trained annotator with a background in linguis-

tics and were based on observing the recorded interactions from the robot’s perspective 

via custom log visualization tools. To check for inter-annotator agreement, a second 

annotator labeled a subset containing 20% (35) of the interactions in the dataset. 

In contrast, component causes capture the internal functioning of the system. These 

annotations require expert technical knowledge of the system and were conducted by 

the first and second author. Each expert labeled 60% of the problem type occurrences, 

with a 20% overlap allowing for computing agreement. 

4.1 Interaction Types 

Each interaction was labeled as one of the four types described above: In-Domain-Real, 

In-Domain-Exploring, Out-of-Domain, and Falsely-Initiated. The annotation scheme 

used the following as a guiding question: “was this at any point an in-domain conver-

sational interaction in which an actor seemed to genuinely need directions in the build-

ing?” Inter-annotator agreement on the 20% subset of data was high; Cohen’s κ = .80. 

We found that the robot falsely initiated 13% (23) of the 173 interactions. The rest 

were roughly evenly split among Out-of-Domain (29%), In-Domain-Exploring (25%) 

and In-Domain-Real (32%). The percentage of users with real intentions is higher than 

was found in previous work (19% [10]) due to our conscious decision to bias the anno-

tation scheme toward labeling the interaction as In-Domain-Real given any evidence of 

a real intention at any point in the interaction. We believe this scheme aligns with the 

proper strategy for deployed robots, namely to assume real intentions unless highly 

confident otherwise. Figure 2 (right) shows the basic statistics of the dataset, divided 
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also by interaction types. Falsely initiated interactions stand apart in terms of duration, 

with a much shorter average length of 9 seconds. 

4.2 Interaction Quality 

The Interaction Quality annotation captures the overall performance of the robot in 

the interaction. Annotators viewed each interaction in its entirety and rated the robot’s 

performance on a scale from 1 (“completely broken”) to 10 (“perfect”). The annotator 

was instructed to take a holistic view as an external-observer view of the interaction 

and not focus solely on the robot's or participants’ perspectives.  

The average score across all interactions is 4.5. Assigning semantic meaning to ab-

solute scores between the two endpoints of the scale is difficult, but we can make rela-

tive comparisons of average scores. As Figure 2 shows, the distribution of scores is 

bimodal, with 50% of interactions assigned less than or equal to 3 and 38% of interac-

tions scoring greater than or equal to 7. Decomposition by interaction type (Figure 2) 

shows that scores vary across interaction types. Falsely initiated interactions receive the 

lowest average score (2.7), and in-domain interactions driven by a real need have the 

highest average score (6.5). We observe lower interaction quality when the nature of 

the interaction does not agree with the system goals, highlighting challenges with the 

system running in the wild. We assessed inter-annotator agreement by computing 

Spearman’s ρ correlation coefficient for the ordinal scale (ρ=0.78). 

4.3 Problem Types 

The third annotation aims to provide an in-depth look at the problems that arise on a 

turn-by-turn basis during the interactions. Success in situated interactions hinges on 

producing the right responses with the right timing. We therefore annotate both content 

and timing problems. A content problem occurs when the robot’s utterance is not ap-

propriate given the current context, e.g., the robot misunderstands the user and provides 

directions to the incorrect destination. A timing problem occurs when the timing of the 

robot’s utterance is incorrect, e.g., a robot starts speaking at a point when the user had 

not yet released the floor, overlapping with the user. 

We segmented each interaction into units, each starting from the beginning of a sys-

tem dialog act and extending until the start of the next. This segmentation resulted in 

Figure 2. Left: Histogram of interaction quality scores broken down by interaction type: In-

Domain-Real (IDR), In-Domain-Exploring (IDE), Out-of-Domain (OoD), and False-Interac-

tion (FI). Right: Table of interaction counts and durations. 

 
# Interactions 

Avg 

Length (s) 

Avg 

Score 

All 173 (100%) 25 4.5 

IDR 56 (32%) 26 6.5 

IDE 43 (25%) 42 4.1 

OoD 51 (29%) 18 3.3 

FI 23 (13%) 9 2.7 

 



6 

 

995 total units. To assess each unit, annotators were asked: (1) "Was this the right time 

for the robot to speak?" and (2) "Was the content of this utterance appropriate?" Anno-

tators were instructed to imagine the “gold standard” of what a competent human might 

do if they were stepping into the robot’s place at that moment in the interaction. They 

were encouraged to consider the context of everything that had occurred prior, includ-

ing previous errors and misunderstandings. Overall, 439 units (44%) were found to 

have a content problem and 277 units (28%) were found to have a timing problem. 154 

units (15%) were labeled as problematic in both content and timing. 

The annotation scheme for content problems contained thirteen sub-labels (a subset 

shown in Figure 4a). Frequent content problems include cases when the robot: asks the 

user to repeat themselves (AskRepeat); asks what the user needs after they had already 

specified that (AskWhat); asks the user for confirmations due to low speech recognition 

confidence (Confirm). The content of greetings and farewells can also be problematic 

when the robot attempts to engage users who do not wish to interact (Initiate-

FalseEngagement) or when it attempts to interact with users who no longer wish to 

engage (NoUserEngagement, MissingFarewell). 

The annotation scheme for timing problems had eleven sub-labels (subset shown in 

Figure 4b). These failures are often related to turn taking, such as pausing too long after 

the user stops speaking (TooLongPause). Conversely, the robot sometimes steals the 

conversational floor and talks over the user (StealFloorSpeaking). Timing can also be 

broken at the beginning and ending of engagements. False engagements may be trig-

gered before any user wishes to engage (InitiateFalseEngagement) and disengaging 

farewells may come too late because the user has already left (LateFarewell). 

We observed high annotator agreement on the labeling of individual content prob-

lems (Cohen’s κ = 0.64), whereas agreement was slightly lower for the assessment of 

timing problems (Cohen’s κ = 0.59). Figure 4a and 4b shows the frequency of top con-

tent and timing problems broken down by interaction type. Falsely-Initiated interac-

tions have the largest proportions of content (57%) and timing (57%) problems, while 

In-Domain-Real interactions exhibit the smallest (35% content, 24% timing). The type 

of the interaction affects the types of frequent content and timing problems. Individu-

ally, content and timing issues related to engagement appear to be most prevalent in the 

falsely initiated interactions, and content failures around confirmation appear more in 

In-Domain-Exploring interactions (15%) than In-Domain Real interactions (9%). 

4.4 Component Causes 

After all units were annotated for content and/or timing problems, the first and sec-

ond authors annotated each problematic unit for the most likely cause of the indicated 

problem. This assessment required expert knowledge of the architecture and inner 

workings of the system. The system architecture (Figure 3) was abstracted into several 

pipelines, each comprising a number of components such as the face tracker, engage-

ment model, dialog model, echo cancellation, voice activity detection, speech recogni-

tion, turn-taking model, etc. In any given turn, multiple system components may fail 

simultaneously. For feasibility of labeling and modeling, the expert annotator identified 

the earliest possible component in a pipeline that failed. 
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Occasionally the robot disengages early without providing a farewell utterance, re-

sulting in having no utterance unit to annotate. Because this is an important error to 

capture, the annotators were instructed to provide an additional indicator for the overall 

timing appropriateness of the robot’s disengagement from each interaction: TooEarly, 

TooLate, Good, or Other. This assessment was highly subjective and ambiguous, re-

sulting in low overall agreement (Cohen’s κ = 0.19). When we collapse the labels into 

TooEarly (31 interactions) and NotTooEarly (142 interactions), Cohen’s κ increases to 

0.52. This indicator is included in the list of component causes. 

Figure 4c depicts the most common component causes, aggregated across both con-

tent and timing problems, and split by interaction type. Component failures in the en-

gagement model, speech recognition, and the dialog model emerged as the most se-

lected causes overall. The analyses show that the components that cause the most prob-

lems vary across interaction types. For example, failures in the engagement model were 

noted most often for falsely initiated interactions (44%). Speech recognition errors were 

much more prevalent in the other interaction types, particularly in the In-Domain-Ex-

ploring (12%) and Out-of-Domain (12%) interactions. This analysis of understanding 

how different components lead to problems for different interaction types can guide 

decisions about which components to invest in to improve performance. For example, 

if there is a higher cost of making mistakes for falsely initiated interactions, the best 

strategy would be to improve the engagement component. 

Figure 3. Pipelines (gray boxes) of components (white boxes) comprising the system. 

Figure 4. Frequency of content problems (a), 

timing problems (b) and component causes (c) 

by interaction type 
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5 Explaining Interaction Quality 

We turn our attention next to understanding how types of problems and component 

failures affect the interaction score. We construct logistic regression models that predict 

the ordinal interaction quality score (scaled down to the 0-1 interval) from various prob-

lems indicators. We compute mean squared error (MSE) in a leave-one-out cross-vali-

dation process and compare with a baseline model that simply predicts the mean rating. 

We begin by looking at how well the ratio of content and timing problems explain 

the overall quality score. The results, shown in Table 1, indicate that percentage of 

content problems in an interaction achieves a MSE of 5.72. The percentage of timing 

problems is less informative (MSE=8.64). 

To determine which component failures are most informative for predicting the in-

teraction score, we construct single variable models based on the percentage of failures 

from each component in the pipeline. The most informative component failures are 

Speech (MSE=8.83) and Engagement (MSE=9.03). Interestingly, when we add these 

two features together, we achieve a much better MSE of 6.66. A model that leverages 

all component causes, plus an indicator for the interaction type, achieves a mean 

squared error of 4.65. We can compare this model to how well the secondary annota-

tor’s scores predict the primary annotator’s scores. On those 35 annotations, the sec-

ondary annotator achieves a prediction accuracy MSE of 4.14, while our model 

achieves MSE=3.67. Although our model performs well here, it is important to note 

that the model is trained on the primary annotator’s scores (using the leave-one-out 

method) and that the rating task itself is subjective among human annotators. 

We also train and test the same logistic regression models separately on each inter-

action type (Table 1). This analysis yields several interesting insights, e.g., that failures 

in the engagement component are particularly informative for falsely initiated interac-

tions, failures in addressee detection are important for InDomain-Real interactions, and 

failures in face tracking are important when users are exploring the system. 

Ideally, robots should be able to assess interaction quality during the interaction, 

rather than only at the very end, allowing it to take steps to improve the interaction or 

acknowledge that things are going wrong. To assess how this might be possible, we 

Table 1. Mean squared error (MSE) from logistic regression models trained on various prob-

lem types and component failures, across interaction types. 

 All 

Intera-
ctions 

IDR IDE OoD FI 

Baseline 10.48 8.74 7.23 9.49 8.76 

%Content 5.72 5.39 4.77 4.58 6.64 

%Timing 8.64 8.04 7.48 6.89 7.53 

Speech 8.83 6.25 5.17 8.46 8.76 

Engagement 9.03 8.11 6.93 9.04 7.58 

Speech + Engagement 6.66 6.52 5.09 7.14 7.58 

Face Tracking 10.48 8.63 6.33 8.86 8.76 

Addressee Detection 10.30 7.83 7.31 9.49 8.76 

All Components + 

Interaction Type 
4.65 5.26 6.28 3.98 7.34 
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applied our best performing model (AllComponents+InteractionType) to the first N 

units of interactions (Figure 5). Predictive power increases as more units are considered, 

but reasonable accuracy seems to be achievable approximately after five units.  

6 Conclusion and Future Work 

We presented a methodology and study on error diagnosis in situated interactive sys-

tems. The methodology combines observer and system-expert annotations to collect 

signals about problems occurring in the interaction. We employ quantitative analyses 

and predictive modelling to study relationships among interaction types, problems, their 

causes, and overall interaction quality. Overall, we found that content problems have a 

stronger impact on overall performance than timing problems. The major identified 

causes of problems are failures in the speech recognition and engagement components. 

Models that consider all component failures, along with a feature indicating the type of 

interaction users are engaging in (real, exploring, out-of-domain, or false), reach a per-

formance approaching that of another human annotator in predicting interaction quality. 

The annotation-based methodology and study has several limitations that highlight 

future directions for research. First, the approach requires a large set of detailed anno-

tations from both observers and system-experts. Our experience indicates that these 

annotation efforts could be further streamlined. Future work may investigate automat-

ing some of these annotations via machine learning. Since different interaction types 

exhibit different profiles of failures and causes, another future direction is developing 

automated methods for inferring the interaction type at runtime [10]. 

When identifying component causes, we have focused on the earliest component in 

the pipeline that fails. As highlighted in earlier research, problems in integrative sys-

tems may be caused simultaneously by multiple components [2]. Due to entanglement 

issues and non-monotonic error propagation, fixing a component early in a pipeline 

does not necessarily lead to improved system performance. Furthermore, from the 

user’s perspective, the critical failure point might not align with the component identi-

fied by our methodology. Future work is needed to understand how the methodology 

can be applied iteratively to address these issues.  

The annotations of interaction quality and problem types rely on a third-person view 

rather than a first-person view, which would require direct user input and might differ. 

For example, an exploring user might be satisfied with the interaction even in the pres-

ence of content failures but an external observer might rate the interaction poorly. Fu-

ture work can aim to understand how these views differ and design interaction methods 

for capturing the first-person assessment without overburdening users.  

Figure 5. Increasing prediction accuracy of the AllComponents+InteractionType Model from 

the first N units of the interaction. Baseline simply predicts the mean. 
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The dataset we have collected provides an initial basis for deeper analyses and ex-

ploration in blame assignment. More sophisticated analyses may leverage additional 

interaction context, include temporal aspects, and lead to a richer understanding about 

which types of failures occur together or which types of failures are indicators for future 

problems. These understandings promise to be useful for enabling systems to perform 

prediction of forthcoming failures and to engage in self-repair and recovery. 
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